Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024420180220040353
Food Engineering Progress
2018 Volume.22 No. 4 p.353 ~ p.357
Effects of Dietary Rice Bran Oil on Mitochondrial Respiration in M2-induced Bone Marrow-derived Macrophages
Lee So-Jung

Kim Woo-Ki
Abstract
Previous studies have suggested that rice bran oil (RBO), an edible oil from the byproducts of rice milling, has antiinflammatory effects in inflammation inducing macrophages, known as M1 subsets. Yet the effects of RBO on the counterpart M2 subsets, the ¡°healing¡± macrophages, were poorly investigated to date. In this regard, recent studies on the molecular/cellular anti-inflammatory mechanisms of dietary components have demonstrated that mitochondrial respiration contributes to macrophage functioning. Therefore, the current study examined whether RBO regulates cytokine secretion by modulating mitochondrial metabolism in wound healing M2 subsets. Palm oil (PO), enriched with medium-chain fatty acids, served as a positive control. C57BL/6 mice were fed a diet containing either corn oil (CO), PO or RBO for 4 weeks, followed by purification of bone marrow-derived macrophages (BMDM) from their tibias and femurs. Cells were further polarized to M2-BMDM, and the expression of M2 marker (CD206) on cellular surfaces were not affected by dietary intervention. In addition, the secretion of anti-inflammatory cytokine (IL-10) in the culture supernatant was not affected by dietary lipids. Oxygen consumption rate, the indicator of mitochondrial respiration in M2-BMDM was not regulated by RBO intervention and PO treatment. Taken together, this study imply that RBO did not intervene both the regulation of inflammatory responses and mitochondrial respiration in M2 macrophages.
KEYWORD
macrophage polarization , dietary lipid , energy metabolism
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)